Bayesian Inference for Markov-switching Skewed Autoregressive Models
نویسندگان
چکیده
منابع مشابه
Bayesian Inference for Markov Switching Stochastic Volatility Models
We study a Markov switching stochastic volatility model with heavy tail innovations in the observable process. Due to the economic interpretation of the hidden volatility regimes, these models have many financial applications like asset allocation, option pricing and risk management. The Markov switching process is able to capture clustering effects and jumps in volatility. Heavy tail innovatio...
متن کاملBayesian Markov Regime-Switching Models for Cointegration
This paper introduces a Bayesian Markov regime-switching model that allows the cointegration relationship between two time series to be switched on and off over time. Unlike classical approaches for testing and modeling cointegration, the Bayesian Markov switching method allows for estimation of the regime-specific model parameters via Markov Chain Monte Carlo and generates more reliable estima...
متن کاملMarkov-switching autoregressive models for wind time series
In this paper we build a Markov-Switching Autoregressive model to describe a long time series of wind speed measurement. It is shown that the proposed model is able to describe the main characteristics of this time series, and in particular the various time scales which can be observed in the dynamics, from daily to interannual fluctuations.
متن کاملBayesian inference for Hidden Markov Models
Hidden Markov Models can be considered an extension of mixture models, allowing for dependent observations. In a hierarchical Bayesian framework, we show how Reversible Jump Markov Chain Monte Carlo techniques can be used to estimate the parameters of a model, as well as the number of regimes. We consider a mixture of normal distributions characterized by different means and variances under eac...
متن کاملBayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SSRN Electronic Journal
سال: 2019
ISSN: 1556-5068
DOI: 10.2139/ssrn.3442765